More on the Continuity of Real Functions
نویسندگان
چکیده
منابع مشابه
More on the Continuity of Real Functions
The terminology and notation used here have been introduced in the following articles: [3], [7], [17], [2], [4], [12], [13], [14], [16], [1], [5], [9], [15], [18], [10], [8], [20], [21], [19], [11], [22], and [6]. For simplicity, we use the following convention: n, i denote elements of N, X, X1 denote sets, r, p, s, x0, x1, x2 denote real numbers, f , f1, f2 denote partial functions from R to R...
متن کاملMore on the Continuity of Real Functions1
The terminology and notation used here have been introduced in the following articles: [3], [7], [17], [2], [4], [12], [13], [14], [16], [1], [5], [9], [15], [18], [10], [8], [20], [21], [19], [11], [22], and [6]. For simplicity, we use the following convention: n, i denote elements of N, X, X1 denote sets, r, p, s, x0, x1, x2 denote real numbers, f , f1, f2 denote partial functions from R to R...
متن کاملThe ring of real-valued functions on a frame
In this paper, we define and study the notion of the real-valued functions on a frame $L$. We show that $F(L) $, consisting of all frame homomorphisms from the power set of $mathbb{R}$ to a frame $ L$, is an $f$-ring, as a generalization of all functions from a set $X$ into $mathbb R$. Also, we show that $F(L) $ is isomorphic to a sub-$f$-ring of $mathcal{R}(L)$, the ring of real-valued continu...
متن کاملThe ring of real-continuous functions on a topoframe
A topoframe, denoted by $L_{ tau}$, is a pair $(L, tau)$ consisting of a frame $L$ and a subframe $ tau $ all of whose elements are complementary elements in $L$. In this paper, we define and study the notions of a $tau $-real-continuous function on a frame $L$ and the set of real continuous functions $mathcal{R}L_tau $ as an $f$-ring. We show that $mathcal{R}L_{ tau}$ is actually a generali...
متن کاملstudy of hash functions based on chaotic maps
توابع درهم نقش بسیار مهم در سیستم های رمزنگاری و پروتکل های امنیتی دارند. در سیستم های رمزنگاری برای دستیابی به احراز درستی و اصالت داده دو روش مورد استفاده قرار می گیرند که عبارتند از توابع رمزنگاری کلیددار و توابع درهم ساز. توابع درهم ساز، توابعی هستند که هر متن با طول دلخواه را به دنباله ای با طول ثابت تبدیل می کنند. از جمله پرکاربردترین و معروف ترین توابع درهم می توان توابع درهم ساز md4, md...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Formalized Mathematics
سال: 2011
ISSN: 1898-9934,1426-2630
DOI: 10.2478/v10037-011-0032-3